
Samuel J. Sully

VoxelPopuli :

A Decentralised Peer-to-Peer

Voxel-Based World

Computer Science Tripos

Robinson College

2019-20

Declaration

I, Samuel John Sully of Robinson College, being a candidate for Part II of the Computer

Science Tripos, hereby declare that this dissertation and the work described in it are my

own work, unaided except as may be specified below, and that the dissertation does not

contain material that has already been used to any substantial extent for a comparable

purpose.

I, Samuel John Sully of Robinson College, am content for my dissertation to be made

available to the students and staff of the University.

i

Proforma

Candidate Number: 2348D

Project Title: Voxel Populi: A Decentralised Peer-to-Peer Voxel-Based

World

Examination: Computer Science Tripos – Part II, July 2020

Word Count: 106071

Line Count: 18602

Project Originator: Self

Supervisor: Prof. Jon Crowcroft

Original Aims of the Project

My project aimed to create a peer-to-peer 3D world using a distributed hash table (DHT),

namely Kademlia [5]. I aimed to explore this approach for Massively Multiplayer Online

games (MMOs) to see if it is viable. The decentralised approach offers various advantages,

such as better load balancing and game longevity.

Work Completed

I implemented a distributed 3D virtual world suitable for MMOs and large scale simula-

tions. The three parts of my project are all functioning correctly. I implemented Kademlia

with some modifications; I implemented the game server to run above the DHT and pro-

cess the computation for a set of chunks of the world and I implemented the graphical

client in Unity which connects to the world and allows a user to move around and interact

with it. My test client demonstrated the viability of my project at scale.

Special Difficulties

None.

1Computed by texcount -1 -utf8 -sum -inc dissertation.tex. Tables included, all content out-

side of chapters 1− 5 excluded.
2Computed by cloc --exclude-dir= pycache --exclude-lang=XML VoxelPopuli/Code.

ii

Contents

1 Introduction 1

1.1 Project Summary . 1

1.2 Motivation . 1

1.3 Related Work . 2

2 Preparation 3

2.1 Starting Point . 3

2.2 Requirement Analysis . 3

2.3 Kademlia . 4

2.3.1 XOR Metric . 4

2.3.2 Node State . 5

2.3.3 RPCs . 5

2.3.4 Node Lookup . 5

2.3.5 Value Lookup . 6

2.3.6 Value Storage . 6

2.3.7 Bootstrap . 6

2.4 Game Server . 7

2.5 Client . 7

2.5.1 Unity . 8

2.6 World & Terrain . 8

2.7 Professional Practice . 9

2.7.1 Ethical Implications . 9

2.7.2 Methodology . 9

2.7.3 Tooling . 9

3 Implementation 10

iii

3.1 Kademlia . 11

3.1.1 RPC Framework . 11

3.1.2 Custom RPC Specification . 12

3.1.3 Generate Procedure . 13

3.2 Game Server . 13

3.2.1 Server State . 14

3.2.2 Protocol . 15

3.2.2.1 Handshake . 15

3.2.2.2 Game . 16

3.2.3 Chunk Thread . 16

3.2.4 DHT Interface . 16

3.2.4.1 Protocol . 17

3.3 Client . 18

3.3.1 Architecture . 18

3.3.1.1 Network Thread . 19

3.3.1.2 Game Thread . 20

3.3.2 Chunk Mesh Generation . 20

3.3.3 Chunk Loading & Unloading . 21

3.4 Overview . 22

3.4.1 Client . 23

3.4.2 Server . 23

3.4.3 Test Client . 24

4 Evaluation 25

4.1 Methodology . 25

4.2 Kademlia Implementation . 25

4.2.1 Unit Testing . 26

4.2.2 RPC Testing . 26

4.2.2.1 Setup . 26

4.2.2.2 Analysis . 27

4.2.3 Lookup Procedure . 27

4.3 Scalability . 28

4.3.1 Local Simulation . 28

iv

4.3.1.1 Setup . 28

4.3.1.2 Analysis . 28

4.3.2 Large Scale Simulation . 30

4.3.2.1 Setup . 30

4.3.2.2 Analysis . 31

4.4 Client . 31

4.5 Node Failure . 33

4.6 Current Limitations . 33

4.6.1 Scale . 33

4.6.2 Security . 34

4.6.3 Data Loss . 34

5 Conclusion 35

Bibliography 37

A Proposal 38

v

List of Figures

2.1 A screenshot of terrain from the game Minecraft. 8

3.1 Diagram giving an overview of VoxelPopuli architecture. 10

3.2 A screenshot of the VoxelPopuli client connected to a world. 18

3.3 A diagram of mapping between vertices and triangles for a simplified face

of a cube. 21

3.4 Directory overview of VoxelPopuli . 23

4.1 RPC Performance . 26

4.2 Lookup Procedure Performance . 27

4.3 Plots showing CPU utilization and memory usage of VoxelPopuli nodes

under different scenarios. 29

4.4 Performance as player count increases (0− 50). 30

4.5 Performance as player count increases (0− 100). 31

4.6 Performance of a 100 node network with 1000 players connected. 32

4.7 Screenshot of dummy players in the VoxelPopuli world. 32

vi

List of Tables

2.1 The four Kademlia RPCs. 6

3.1 JSON RPC specification. 12

3.2 VoxelPopuli block types. 14

3.3 Message format for the game server protocol. 16

3.4 List of packets types exchanged between clients and game servers. 17

3.5 Details of the updates exchanged between the network and game threads

of the client. 19

vii

List of Algorithms

1 RPC framework @stub decorator algorithm. 12

2 Datagram handling in my JSON RPC framework. 13

3 Generate Procedure Pseudocode. 14

4 The mesh generation algorithm used by the client. 22

5 Algorithm for maintaining the correct set of loaded chunks by the client. . 22

viii

Chapter 1

Introduction

1.1 Project Summary

My project, VoxelPopuli , explores a peer-to-peer architecture for Massively Multiplayer

Online Games (MMOs) or large scale simulations. This is in contrast to the more com-

monly used centralised approach. VoxelPopuli is built upon a distributed hash table

which is used to locate in the peer-to-peer network the server responsible for handling

any particular part of the world.

VoxelPopuli consists of three parts: the distributed hash table which is a modified

version of the Kademlia [5] specification; the game server which runs the computation for

certain segments of the world and the Unity client used to interact with the world. All

these have been completed in adherence to the success criteria in my project proposal, as

well as the evaluation client used in the evaluation stage. A large scale test of VoxelPopuli

using my dedicated server demonstrated the project’s viability and provided useful data

to inform future iterations.

1.2 Motivation

The MMO genre is very popular1 in modern gaming, as an increasing proportion of the

populace have access to high-speed broadband the prevalence of these games continues to

increase. Most of these games employ a centralised client-server mode where the creators

of the MMO have a relatively small number of expensive and powerful machines which

they use to handle all players.

This centralised approach often requires some form of ‘sharding’ [2], whereby players

are allocated into separate, independent instances (‘shards’) of the same world. This

means that players can only interact with others connected to the same shard. The

centralised approach also means that the game creators have total authoritative control

over the game.

1World of Warcraft – a popular MMO – had 7.7 million subscribers in 2019.

1

CHAPTER 1. INTRODUCTION 2

An alternative approach is a decentralised, peer-to-peer approach which I explore in

this project. In this approach the world is separated into segments (or ‘chunks’) and

each peer in the network is responsible for handling the load for a number of chunks.

This approach implicitly performs load balancing and is highly failure tolerant, as a node

failure can be dealt with by simply having another take over.

This has a number of advantages over the centralised, sharded approach. One signifi-

cant advantage is that the world is able to be explicitly mutable (such as the voxel-based

world I have implemented), with the sharded approach if a player makes a change in

one shard then we may need some way of propagating these changes to the other shards

while maintaining consistency. However, in my approach there is only one server which

is authoritative for the state of any part of the world so there is no need for complex

consensus mechanisms.

A further advantage is that the system has improved longevity. When large-scale

MMOs cease to be profitable or useful for the developers, who operate the centralised

servers, they often shut them down, as recently happened with the popular MMO Club

Penguin [3] in 2017. With my approach, if we allow individuals to create their own servers

to join the peer-to-peer network then, provided there exists a community dedicated to

keeping the MMO running, it can continue to exist at no cost to the developers. It would

even be possible to have multiple, separate networks running or even networks running

modified versions of the game.

1.3 Related Work

There are very few large-scale, peer-to-peer MMOs, likely due to the security issues I

explore in the evaluation chapter and due to the fact that it limits the ability for the

developers to monetise the MMO post-release. However, it is possible that techniques

similar to mine may be used behind the scenes on a number of large-scale MMOs.

One similar piece of work is SpatialOS [4], this is a platform for managing online

games or simulations in the cloud. It works in a similar way to VoxelPopuli , by splitting

up the world into segments which are administrated by separate servers. SpatialOS is

produced by the startup Improbable and is still fairly new, however, it is being used in

the development of a number of games.

It is worth noting also that while my implementation of Kademlia is custom, I used a

Kademlia library [5] for Python, called PyKademlia, as a reference for a fully functioning

Kademlia implementation. The approach used in PyKademlia follows a slightly different,

later version of the Kademlia specification, I follow the original specification outlined in

the cited paper.

Chapter 2

Preparation

2.1 Starting Point

Prior to this project I had limited experience in implementing distributed systems, my

knowledge on such systems mainly comes from the Part IB courses Concurrent and Dis-

tributed Systems and Computer Networking. Computer Networking introduced the con-

cept of distributed hash tables (DHTs) which are used extensively in VoxelPopuli . Concur-

rent and Distributed Systems introduces most of the overarching principles of distributed

systems, such as RPCs, which are essential in VoxelPopuli . Furthermore, this project

relies on knowledge from a number of other courses, such as Part II Principles of Com-

munication and Part IA Introduction to Graphics. I have some limited experience with

3D graphics from my own hobby programming as well.

2.2 Requirement Analysis

VoxelPopuli aims to implement a suite of software for the operation, interaction with

and testing of a 3D world which is distributed over a number of peers in a peer-to-peer

network. The success criteria set out in my proposal are as follows:

1. My DHT must adhere to the Kademlia specification [5]. It is possible I will need to

make some changes to fit the specification better to my needs and this is acceptable.

2. The peer-to-peer node program must join the network, bootstrapping via some

known node, and then will be able to participate in hosting the game world as it

becomes part of the DHT.

3. It must be possible to interact with the world using a simple 3D graphical client,

which is able to place and remove voxels from the world. These changes must persist.

4. The system must handle player moving between separate chunks (and thus, separate

peers) seamlessly, with no loading screen.

3

CHAPTER 2. PREPARATION 4

5. There must be a simple test agent which connects to and interacts with the world

in some notional way to emulate the behaviour of a human user. This is for the

purposes of quantitative evaluation.

In addition to these, the project needs to fulfil a number of other requirements:

• Robustness: the system must be very robust, handling node failures with minimal

disruption to the overall system, minimising disruption to users connected to the

system at a given time.

• Deployment: the implementation must run as a cloud application, being easily

deployable to a large number of machines. In my testing I will use my dedicated

server running Ubuntu 18.04.

• Decentralisation: the implementation must be designed to be entirely decen-

tralised, nodes in the P2P network must be entirely equal, there must be no author-

itative entity in the system.

• Mutability: the game world must emulate that of voxel-based games such as

Minecraft. As such, users must be able to edit the world and have these changes

persist, users’ positions must also be stored so that when they log out and back in

at another time (or to a different server), they return to where they left off.

2.3 Kademlia

VoxelPopuli is built using a DHT at its core, a DHT is a decentralised storage system

based on the commonly used hash table data structure. DHTs store 〈key,value〉 pairs,

these are distributed among the nodes in the network, with there existing some method

to partition the set of keys between the nodes, preferably in such a way that node joins

or leaves require minimal changes to this partition (i.e. a node leaving does not cause the

entire key-node mapping to change). The DHT maintains an overlay network where each

node maintains a set of links to other nodes in the DHT according to the topology of the

network, this set of links is used in routing queries around the DHT.

2.3.1 XOR Metric

The Kademlia specification sets out that identifiers be 160bit integers. Nodes IDs and

keys for the DHT occupy this ID space. The notion of distance between identifiers, d(x, y),

is given by the bitwise XOR of the two interpreted as an integer1 (i.e. d(x, y) = x ⊕ y).

This is a valid metric as it obeys the following properties:

1This is effectively a derivation for the common prefix length of the two IDs,

see the second answer given here: https://stackoverflow.com/questions/25751928/

kademlia-xor-metric-properties-purposes/25756389 (accessed 2020-05-01.)

https://stackoverflow.com/questions/25751928/kademlia-xor-metric-properties-purposes/25756389
https://stackoverflow.com/questions/25751928/kademlia-xor-metric-properties-purposes/25756389

CHAPTER 2. PREPARATION 5

1. d(x, x) = 0, that is, the distance from any identifier to itself is 0.

2. d(x, y) > 0 if x 6= y, that is, the distance between any two distinct identifiers is

larger than 0.

3. d(x, y) = d(y, x), that is, distances are symmetric.

4. Distances obey the triangle inequality, i.e. d(x, z) ≤ d(x, y) + d(y, z).

The set of keys which a node ‘owns’ is given by all those which are closest to its ID using

the above notion of distance2.

2.3.2 Node State

Each node maintains some amount of information about other nodes in the network in

order to route messages. Each node maintains a k-bucket for each i in 0 ≤ i < 160 , a

k-bucket is simply a sorted list (of length k) of 〈IP address, UDP port, node ID〉 triples

of nodes from 2i to 2i+1− 1 (inclusive) distance away from this node. The lists are sorted

by time last seen, such that the most recently seen node is at the tail of the list. This is

useful later when evicting stale nodes from the k-bucket. Note that k is a parameter of

the network, the replication parameter.

In order to populate these k-buckets, whenever a node receivers a message from an-

other, it looks for the appropriate k-bucket and, if the sender is already in the k-bucket

then it is moved to the tail of the list, otherwise it is appended to the tail of the list. If

the k-bucket is full then we send a PING RPC to the least recently seen node, if it fails to

reply then we evict it and put the new node in instead, else we discard the new node3.

2.3.3 RPCs

The Kademlia protocol has four RPCs: PING, FIND NODE, FIND VALUE and STORE. All

other operations are built up from these four RPCs. Table 2.1 details the function of each

RPC. My implementation deviates from this specification as detailed in § 3.1.2.

2.3.4 Node Lookup

The lookup procedure is used to locate the k closest nodes to a supplied identifier. The

lookup procedure has one parameter, the concurrency factor α. It proceeds as follows:

1. Find α closest nodes from own k-buckets.

2. Send FIND NODE RPCs to these α nodes searching for supplied identifier.

2This is not strictly true, actually the k closest nodes all store values for that key, where k is a

parameter of the network.
3In my implementation, the new node is added to a queue to join the k-bucket.

CHAPTER 2. PREPARATION 6

PING Used to check whether a node is online, upon receiving a PING RPC a

node will reply with its ID.

FIND NODE Takes a 160bit integer as argument (and identifier). When a node receives

a FIND NODE RPC it returns 〈IP address, UDP port, node ID〉 triples

from the knearest nodes to the argument identifier that it knows of.

FIND VALUE Behaves in the same was as FIND NODE but will return a value if it pos-

sesses one for the supplied ID.

STORE Takes a 〈key, value〉 pair which the receiving node stores.

Table 2.1: The four Kademlia RPCs.

3. Then we recursively send FIND NODE requests nodes it learned of from the results of

previous steps.

4. When an iteration of RPCs gives us no new nodes better than the current closest,

we send RPCs to all of the k closest nodes we have not yet queried.

5. The procedure terminates when we have received a response from all of the k nearest

nodes.

The k nearest nodes are returned from this procedure.

2.3.5 Value Lookup

The procedure for retrieving a value from the DHT is similar to the node lookup procedure

above, replacing the FIND NODE RPCs in the above description with FIND VALUE RPCs.

Instead of returning the k nearest nodes it will return the value found, or some notional

NULL value if none exists.

2.3.6 Value Storage

The store value procedure consists of performing a lookup node procedure as above with

the identifier being the key of the 〈key, value〉 pair to be stored. Then STORE RPCs with

the 〈key, value〉 pair are sent to the k nodes returned from the lookup.

2.3.7 Bootstrap

Bootstrapping is the process by which a node joins the network. Because Kademlia routing

information is implicitly learned through network activity we do not need an explicit JOIN

method, we can simply use existing RPCs to join a network. All that we need is the IP,

port and ID of any existing node in the network, this is the bootstrap node.

The joining node, n, inserts the bootstrap node, m, into the appropriate k-bucket and

then performs a node lookup for its own ID. Finally it refreshes all its buckets which

CHAPTER 2. PREPARATION 7

are further away than its closest neighbour. Refreshing a k-bucket simple means picking

a random ID from that bucket’s range and performing a node lookup for that ID. This

operation is performed automatically by each node periodically on all buckets which have

not been touched in a certain amount of time4. By performing a lookup of itself and

by refreshing those k-buckets we have ensured that this node has been inserted into the

routing tables of a number of other nodes.

2.4 Game Server

The second major part of VoxelPopuli is the game server, for this I use an architecture

similar to that used by Minecraft and by Valve’s Source engine [6]. An instance of a game

server is the authoritative dedicated host that runs the computations for a given set of

chunks of the game world, a client connects to a number of servers in order to receive the

current world state and display it to the user graphically. This section of the system is

purely client server, clients do not communicate among one another, instead doing so via

the server(s).

The server uses an approach used in both Minecraft and Source where the game world

is simulated in discrete time steps known as ‘ticks’. During a tick we process any incoming

packets and update the state of the world, then we send any packets to clients in order to

update the world state. In these examples world state is transferred to clients using delta

compression, where, after the initial sending of the game state, we only send changes that

happened since the last tick, this reduces network load.

A number of further approaches could be employed by my implementation, such as

compensating for latency and interpolating between ticks. However, these are beyond the

scope of my investigation and are thus not a requirement.

2.5 Client

The third major part of VoxelPopuli is the client, which is used to connect to and interact

with, the world. This section of the project requires some 3D graphics, thus it draws on

material from the two graphics courses in Part IA and Part IB. The client also implements

the algorithm for locating and loading the relevant chunks into the world so that the

chunks surrounding the player’s current position are always loaded.

For this section of the project I decided to use Unity, rather than LWJGL, because

the graphical element was simpler and as graphics is not the focus of my investigation

this felt appropriate.

4Usually 1 hour.

CHAPTER 2. PREPARATION 8

2.5.1 Unity

Unity is a 3D game engine which is widely used. It is fairly easy to learn yet quite powerful

and expressive making it a popular tool in the modern games industry. A simple overview

is all that is needed for this project. Unity provides us with a 3D world populated with

game objects. These game objects can have components attached to them, such as a mesh

renderer (to render a 3D mesh) or light source for example. However, most importantly

you are able to assign scripts as components which you can write yourself, these scripts

have a number of built-in methods which Unity calls at particular times, most importantly

we have the Start() method, which is called upon creating the component, the Update()

method which is called each frame and the FixedUpdate() method which is called each

time the physics engine updates. These scripts have access to a powerful API allowing us

to influence the game world.

2.6 World & Terrain

The game world is analagous to that of Minecraft, in that it consists of voxels (i.e. blocks)

arranged in a 3D grid. An example of Minecraft ’s terrain can be seen in figure 2.1. The

Minecraft world is broken into ‘chunks’ each 16 × 16 × 256 blocks, then each chunk is

simply a 3D array of block data.

Figure 2.1: A screenshot of terrain from the game Minecraft.

The terrain in Minecraft is generated procedurally, allowing for infinite worlds to

be created on the fly. A common approach in procedurally generated video games is

CHAPTER 2. PREPARATION 9

to use some form of coherent noise5 to generate a height map6. In VoxelPopuli I use

Simplex noise [7] to generate a heightmap for my world. Then I use simple rules to assign

blocks at different heights different values (i.e. grass on top, followed by dirt, followed by

stone) in order to produce a Minecraft-like world. The structure of the world into chunks

allows for easy segmentation across servers as each chunk can reside on a different server,

additionally, by having data represented within a chunk as a 3D array this makes editing

the world simple.

2.7 Professional Practice

2.7.1 Ethical Implications

One legal and ethical concern is that VoxelPopuli would give users access to a canvas

within which they could, theoretically, encode any data. This could give rise to potential

misuse by others. An interesting example is the use of Minecraft to smuggle censored

journalism into states with strict censorship laws [12].

2.7.2 Methodology

The project was broken up into discrete features, with a timeline planning to complete

each in approximately two to three weeks. Thus I followed the Agile software develop-

ment workflow. Each sprint had a deliverable which could be tested independently and

demonstrated. My sprint timetable outlined in the proposal was adapted as the project

moved forward and some parts of the project took more, or less, time than anticipated.

2.7.3 Tooling

I used the PyCharm IDE for the development of the Kademlia implementation and my

game server as these were both written in Python using version 3.8 due to improvements

made to the asyncio library in Python 3.8. For the client I used Unity with Microsoft

Visual Studio 2017 for editing the C# scripts. Git was used for version control, with

code pushed to GitHub regularly and further backed-up daily to both the SRCF7 and the

MCS using a cron job.

5Coherent noise simply means smooth pseudorandom noise which obeys the following properties:

1. The same input always gives the same output.

2. A small change in the input produces a small change in the output.

3. A large change in the input produces a random change in the output.

6Simply a 2D function or array where the value at any given point is the height of the terrain at any

given point.
7Student-Run Computing Facility.

Chapter 3

Implementation

VoxelPopuli consists of three parts: the bespoke Kademlia implementation, the game

server and the client. The system works by having the client query the Kademlia im-

plementation to locate the appropriate servers for a particular part of the world, then

connecting to that server and ‘joining’ the world via that server. This is visualised in

figure 3.1.

Figure 3.1: Diagram giving an overview of VoxelPopuli architecture.

The client needs to connect to a single node from the VoxelPopuli network, which it

will use as a ‘stepping stone’ to access the whole network. It uses this stepping stone node

to query the DHT to find the 〈IP, port〉 of the game servers responsible for the chunks it

needs. It then initiates connections with each of these game servers in parallel, registers

the player in that chunk and downloads the world data.

The VoxelPopuli server consists of two distinct parts, the Kademlia node and the game

server. Thus for each node in the network there are two virtual nodes. The Kademlia

10

CHAPTER 3. IMPLEMENTATION 11

nodes are not visible to a client. In order to query the DHT, clients connect to any

game server and initiate a special type of session specifically for DHT access. The game

server then performs queries to the DHT on behalf of the client. Further details of this

special session are in § 3.2.4. Note that for simplicity’s sake the Kademlia node and game

server bind to the same IP address with the game server port being the Kademlia port

incremented by one.

3.1 Kademlia

This section introduces my bespoke implementation of the Kademlia specification. A

custom implementation of Kademlia was necessary for two main reasons:

• The project necessitated not only PUT and GET procedures but also a GENERATE pro-

cedure for locating the appropriate server for a particular chunk and then instructing

it to generate said chunk.

• Two distinct types of data needed to be stored in the network. The network needed

to store chunk location information (IP and port of appropriate server) and player

state information in distinct areas so as not to conflate them.

As such, a custom implementation was devised with additional RPCs and a bespoke

high-level interface with the required PUT, GET and GENERATE procedures.

3.1.1 RPC Framework

In order for Kademlia nodes to communicate with each other we need a method of issuing

RPCs to remote machines and retrieving the results. In order to do this I used asyncio’s

DatagramProtocol class which is a base class for implementing protocols over UDP. This

class provides overrideable methods such as datagram received() which is called when

the underlying socket receives a UDP datagram. I wrote a general-purpose RPC system

because at the time I was unsure how many RPCs I would need and wanted to be able

to add and remove them on the fly. This proved useful when revising my Kademlia

implementation to include the separate STORE and FIND VALUE RPCs.

In order to implement the RPC framework I designed a JSON format for RPC calls

and responses (see table 3.1 for details). I created two function decorators in Python:

@rpc and @stub. @rpc adds no special behaviour and simply marks that this method

may be called remotely; @stub replaces the supplied method with a method which takes

the same arguments and computes the JSON RPC string to be sent to the other machine,

then sends this message and awaits a reply before returning the result (or None on a

timeout), this process is outlined in algorithm 1.

Upon receiving a datagram the RPC framework decodes it as a JSON string and

checks whether it is a function call or a response. In the case that it is a call, the relevant

CHAPTER 3. IMPLEMENTATION 12

id 32-bit random number to uniquely identify this RPC call.

node ID of the sending node.

call Boolean representing whether this is an RPC call or a response.

rpc The name of the remote procedure to be called.

args The list of arguments (in order) to be supplied to the remote procedure. Not

present on responses.

ret The return value of a remote call. Not present on calls.

Table 3.1: JSON RPC specification.

function is checked to determine if it has the @rpc decorator (i.e. it has been marked

for remote calling) and then executes it, packaging the result up as a JSON message and

returning it to the sender. If it is a response, it checks if there is a pending RPC with that

ID, if so it will supply the result to that RPC call, otherwise the message is discarded.

This process is detailed in algorithm 2.

Algorithm 1 RPC framework @stub decorator algorithm.

function rpc stub(func, to node, args)

id ← randombits(32)

json ← {“id”: id, “node”: this node id, “call”: true, “rpc”: func, “args”: args}
store pending rpc in table

send udp(json, to)

schedule timeout

await response OR timeout

if timed out then

return None

else

response ← get response(id)

return response

end if

end function

This framework allows for the Kademlia specification to be implemented as described

in the following sections. It allows methods to be tagged as remotely callable and allows

for the creation of stub methods which allow calling of RPCs on remote machines. This

is necessary for the implementation of the Kademlia RPCs.

3.1.2 Custom RPC Specification

In table 2.1 I outlined the RPCs in the default Kademlia specification. In my implemen-

tation I separated STORE PLAYER and STORE CHUNK RPCs as well as equivalent variants of

the FIND VALUE RPCs. These replace the default STORE and FIND VALUE RPCs meaning

we have a final specification consisting of six RPCs: PING, FIND NODE, STORE PLAYER,

STORE CHUNK, FIND PLAYER and FIND CHUNK.

CHAPTER 3. IMPLEMENTATION 13

Algorithm 2 Datagram handling in my JSON RPC framework.

function datagram(data, from)

msg ← json decode(data)

if msg.get(“call”) then

func ← get function(msg.get(“RPC”))

if func exists AND func has decorator @rpc then

res ← func(msg.get(“args”))

json ← {“id”: msg.get(“id”), “node”: this node id, “call”: false, “rpc”:

func.name, “ret”: res}
send udp(json, from)

end if

else

if rpc with id msg.get(“id”) is pending then

send msg.get(“ret”) to pending RPC calls

end if

end if

end function

In order to accommodate these new RPCs, the lookup procedure was made polymor-

phic, taking the appropriate RPC as an argument. Additionally, each node now has two

separate storage tables, one for player data and one for chunk data. This implementa-

tion was preferable to the alternative of running two distinct Kademlia networks, as this

would have significant additional overhead as two separate node states would need to be

maintained for each node.

3.1.3 Generate Procedure

When a chunk is found not to exist in the network, it must be generated. In order to do

this we need to first locate the server it should be generated on, then we need to check

that server is up. Once we have confirmation that the server is running we send a request

to the game server on that VoxelPopuli server to generate and initialise the node ready for

players. If a node is down we move to the next nearest node. Once the chunk is generated

we must store the 〈IP address, port〉 of the node it was generated on in the network so

that in future when we look up this chunk we will find the correct server. Algorithm 3

gives pseudocode of the generate procedure.

3.2 Game Server

The game server is responsible for performing the computation and maintaining the state

for a number of chunks concurrently. It is also responsible for providing clients with a

method of querying the DHT to locate chunks in the VoxelPopuli network and to retrieve

player data.

CHAPTER 3. IMPLEMENTATION 14

Algorithm 3 Generate Procedure Pseudocode.

function Generate(ChunkCoordinate)

key ← sha1(ChunkCoordinates)

nodes← lookup(key)

for n ∈ nodes do

Send generate request to game server at < n.ip, n.port+ 1 > . Game server

address is that of respective Kademlia node with port incremented.

if Successful then

Call RPC STORE CHUNK(key,< n.ip, n.port+ 1 >)

return Success

end if

end for

return Failure

end function

3.2.1 Server State

The game server state consists of a set of active client connections (and two queues for each

connection, one for receiving and one for sending data) and the state for each of the chunks

it is responsible for. Chunk state consists of the world data for that chunk, represented as

a 3D array1, of integers ranging between zero and three to represent different voxel types

(see table 3.2); the set of players currently active in this chunk and their positions; a list

of clients who are subscribed to updates on this chunk and (x, y) – the coordinates of this

chunk in the world. Note here that a client may be connected to a single game server

multiple times because it is connected to multiple of the chunks this server is responsible

for.

Block Type Air Stone Grass Dirt

Integer Value 0 1 2 3

Table 3.2: VoxelPopuli block types.

Chunks are either loaded or unloaded, unloaded chunks have no connected clients and

their computation (i.e. game loop) is not currently being executed. A loaded chunk has

a dedicated thread for performing the game computations of the chunk, a chunk is only

loaded if it has a non-zero number of connected clients and is unloaded as soon as the

last client disconnects.

The game server’s main thread runs continuously a loop it checks if there are any

new connections, in which case it will perform the handshake procedure in § 3.2.2.1.

Furthermore, it uses select to get a list of sockets ready for reading or writing. Then,

for each readable socket it reads all data available and adds it to the socket’s buffer, if

it encounters a newline character (denoting the end of a packet) it puts the packet into

the receive queue associated with this socket and clears the buffer. For each writeable

1The current size of a chunk is 32× 32× 32 blocks.

CHAPTER 3. IMPLEMENTATION 15

socket it checks if there is queued data to send and if so, attempts to send it, removing

the successfully sent data from the send queue associated with that socket.

3.2.2 Protocol

Here I outline the protocol used to communicate between a VoxelPopuli node and a

client. It is separated into two distinct parts: the handshake procedure used to connect

to a VoxelPopuli node and determine the function of the connection and the game server

protocol used to exchange game state between client and server each tick.

3.2.2.1 Handshake

When the server receives a new connection it waits for a JSON message from the new

client, this message is decoded and it should contain a type field. This type field can

take four different values, depending on which the server will take different actions. The

possible values are:

• “connect” – this means that the client wishes to connect to a chunk resident on

this VoxelPopuli server. There will be a field called chunk which contains the chunk

coordinates of the chunk to be connected to. The server will then perform the

following:

1. Check if the relevant chunk is indeed resident and generated on this server. If

not it will send a failure message to the client and return.

2. Check whether the chunk is loaded and if not load it by starting a new chunk

processing thread for this chunk (see § 3.2.3).

3. Add this client to the chunk processing thread’s client list.

• “generate” – this means that the client (in fact another VoxelPopuli server in this

case) is requesting that a supplied chunk be generated. Again the chunk field will

be present, containing the coordinates of the chunk to be generated. The server will

simply generate the chunk and add it to its set of chunks, however, it will not load

it.

• “dht” – this means that the client does not wish to use this node as a game server

but instead as an access point to the DHT. In this case we launch a new, dedicated,

thread to handle DHT queries, details of this thread can be found in § 3.2.4.

• “ping” – used to query whether a game server is alive, returns the UTF-8 encoding

of the string “pong”.

Once the action has been completed successfully the server sends an acknowledgement

to the client, informing it that the operation succeeded. Unless the connection is to be

kept live (i.e. in the case of connecting to the game server (“connect” packet) or DHT

interfacing (“dht” packet)) then the connection is closed.

CHAPTER 3. IMPLEMENTATION 16

3.2.2.2 Game

There are a number of messages which need to be exchanged between the client and game

server. These allow the client(s) to inform the server that it has performed an action

updating the world’s state and allow the server to inform the client(s) of these, and other,

state changes. Again these are exchanged as JSON messages of the format shown in

table 3.3.

Type (int) Arguments (list of floats) Player (string)

Table 3.3: Message format for the game server protocol.

The game server protocol consists of six types of packet which are exchanged between

clients and servers. The details of each packet are in table 3.4. In order to signal the

end of a packet each packet has a newline character appended to the end of its JSON

representation. Packets are encoded as bytes using UTF-8 and then sent over a TCP

socket between client and server.

3.2.3 Chunk Thread

The chunk thread performs the computation for one chunk of the world. In theory, the

network should contain no more than one chunk thread for any given chunk. Meaning

that clients connecting to the same chunk will always find the same server.

It is important here to make a distinction between a ‘client’ and a ‘player’, a client

is any instance of the software described in § 3.3 and has an associated player with a

position in the world. This client may be connected to multiple chunk threads across

the network, however, the player is only resident in one of these chunks, in all the other

chunks the client is simply listening to updates from this server in order to render this

chunk to the user.

The computation runs in a continuous loop, it pops any packets from its receive queue

and performs the appropriate action as explained in table 3.4, this may involve updating

the game state and hence, sending packets to some of the clients connected. It then steps

the game time and sends all players in this chunk a packet informing them of the time

change. Next it checks if any player has not been heard of for a certain period of time

and removes it, assuming it has gone offline.

When there are no active clients for this chunk thread it will unload, saving the state

and stopping the thread so as not to waste resources. This ensures that the number or

chunk threads active on a given node at a particular time is kept to a minimum.

3.2.4 DHT Interface

As previously explained, in order for clients to query the DHT (and thus retrieve their

saved player data and the locations of chunks in the network) they must have some method

CHAPTER 3. IMPLEMENTATION 17

Packet Type ID Purpose Arguments

PLAYER REGISTER 1 Used by clients to inform a server that a

player is entering a particular chunk. Re-

layed to clients to inform them they should

start rendering this player.

Player

position

(x, y, z).

PLAYER DEREGISTER 2 Used by clients to inform a server that a

player has left a particular chunk. Also

triggers server to save player data to DHT.

Relayed by server to clients to inform they

should stop rendering this player.

None.

PLAYER MOVE 3 Used by clients to update inform the server

of a change in a player’s position. Relayed

by server to clients so they can update where

the player is being displayed.

New player

position

(x, y, z, θ),

θ = yaw.

CHUNK DATA 5 Packs entire chunk block array into packet

and sends to player so they can load and dis-

play a chunk.

Flattened

chunk data

array.

TIME 6 Informs the client that the in-game time has

changed, sent every tick.

Current

time as

minutes

from mid-

night

(accurate

to second).

BLOCK CHANGE 7 Used by a client to inform the server that

the world has changed, server updates state

and sends updated CHUNK DATA packet to all

clients.

Position

of block

to change

and new

block type.

Table 3.4: List of packets types exchanged between clients and game servers.

to query the DHT. In order to do this they connect to a game server and perform the DHT

handshake as described in § 3.2.2.1. This connection is then given a dedicated thread to

respond to queries to the DHT. The current protocol allows a client to either get the 〈IP,

port〉 for a particular chunk (the chunk is generated if does not exist in the network) or

download player save data (position primarily).

3.2.4.1 Protocol

The thread process one request at a time and is not guaranteed to respond to requests

issued while another request is pending. There are two packet types chunk query (type

0) and player query (type 1), a packet’s first byte is its packet type. To query a chunk

location a packet is sent consisting of a leading zero byte (packet type) followed by the

CHAPTER 3. IMPLEMENTATION 18

JSON encoding of the coordinates of the chunk (as a JSON list). The server replies with

the JSON list [IP address, port]. To query player data a packet consisting of a leading

1 byte (packet type) followed by the JSON attribute-value pair: {‘name’:player name}
where player name is the username of the player to query. The server responds with

the JSON representation of the player’s coordinates. If the player was not found then it

returns (0, 32, 0) (the default spawn position). Note that all the JSON strings are encoded

as bytes for sending using UTF-8.

3.3 Client

The client is the user’s entry point into the world, it renders the world (and other players

– rendered as grey cuboids) and allows the player to move around within it; it provides

a basic physics simulation for realistic movement and collisions and it allows the user to

make changes to the world by breaking and placing blocks. A screenshot of the client in

action can be seen in fig 3.2. The client was written in C# using the Unity game engine.

Figure 3.2: A screenshot of the VoxelPopuli client connected to a world.

3.3.1 Architecture

The client operates two main threads as well as a two threads (one each for receiving

and sending) for each chunk it is connected to. The two main threads exist to separate

long, blocking processes from the thread rendering the world, this prevents frame rate

CHAPTER 3. IMPLEMENTATION 19

stuttering2. The two main threads will be referred to as the network thread and the game

thread.

Update Type Purpose Arguments

PLAYER MOVE Used by the network thread to inform the game

thread that another player has moved and the ob-

ject representing that player should be moved.

Player name and

new position.

Used by the game thread to inform the network

thread that the player associated with this client

has moved so that the network thread can relay

this to the server.

LOAD CHUNK Used by the network thread to make the game

thread load in newly downloaded chunk data.

Chunk coor-

dinates, block

array and mesh

data. (Encap-

sulated as a

‘Chunk‘ object.)

UNLOAD CHUNK Used by the network thread to make the game

thread unload a chunk, removing it from the game

world.

Chunk coordi-

nates.

PLAYER ADD Used by the network thread to inform the game

thread of a player appearing in a particular chunk,

the game thread will add an object to the world

to represent this player.

New player’s po-

sition and name.

PLAYER REMOVE Used by the network thread to inform the game

thread a player has left a particular chunk, the

game thread removes the player from the world.

The player’s

name.

TIME Network thread informs the game thread a TIME

packet has been received, the game thread will

move the game’s light object to reflect this.

The new time.

BLOCK CHANGE Used by the game thread to inform the network

thread the player has broken or placed a block.

The position of

the block to be

updated and its

new type.

Table 3.5: Details of the updates exchanged between the network and game threads of

the client.

3.3.1.1 Network Thread

The network thread has access to send/receive queues for each chunk the client is con-

nected to. It takes received packets from these queues and processes them ready to be

2Where the frame rate drops briefly, causing the game to appear to momentarily freeze

CHAPTER 3. IMPLEMENTATION 20

sent to the game thread. Some packets require an amount of computationally intensive

pre-processing before they are ready to be used by the game. For example, packets of

type CHUNK DATA require a large amount of processing as the array needs to be unflattened

and then the chunk’s mesh data needs to be generated – this can take 10s of frames. This

computation is performed in the network thread which has no bearing on the client’s

frame rate. Once any pre-processing is performed a state update is sent to the game

thread which is rendering the world.

The network thread also receives updates from the game thread, these updates can be

player movement or block changes. Where appropriate, it converts these updates into a

packet and queues these for sending to the relevant chunk’s server.

Finally, the network thread ensures that the correct chunks are loaded, locating and

loading those which are needed and unloading those which are no longer needed. This is

discussed in detail in § 3.3.3. To do this is maintains a connection to a VoxelPopuli node

where the connection has been setup to be in DHT query mode, allowing the client to use

this node to query the DHT.

3.3.1.2 Game Thread

This is the main Unity thread. The part that is of interest to this project is the update()

method in our World script which is executed each frame. This has access to the incoming

and outgoing update queues used to exchange state updates between the network thread

and the game thread. The game thread simply performs the necessary steps to make state

updates received from the network thread visible to the user, and it sends updates to the

network thread when the user does something which updates the state of the world.

Details of the types of updates exchanged can be seen in table 3.5. Some of these are

very similar to the packets from table 3.4 as expected. Within the game thread each player

has an object to represent it (in this prototype they are simply a cube) and each chunk

has an object to represent it (a 3D mesh with an associated ‘Chunk’ object containing

the block array and the mesh’s data – details of mesh data generation are in § 3.3.2).

3.3.2 Chunk Mesh Generation

In computer graphics, a mesh is a collection of vertices, edges and faces which make up

a 3D object. For each chunk we must generate a mesh from the block array in order to

render the chunk to the player. In order to do this we must construct two arrays; firstly,

we need to compute the array of vertices in the mesh, then we need the array mapping

these vertices to triangles. In order to do this, for each triangle we need the indices of the

three vertices that make up that triangle, we then add these three indices to the triangles

array.

In order to apply textures to the faces we also need to provide a texture coordinate

(often referred to as a uv coordinate) to each vertex. This is supplied in an array too,

where the indices in the vertex array correspond to the indices of the texture coordinate

CHAPTER 3. IMPLEMENTATION 21

Figure 3.3: A diagram of mapping between vertices and triangles for a simplified face of

a cube.

of that vertex in the uv array. Once we have computed our vertex, triangle and uv arrays

we can supply these to Unity which will be able to generate and render the mesh for

us. This process is very computationally intensive, for our chunks it involves iterating

over all 323 = 32768 blocks and performing six iterations (one per face) for each block.

Pseudocode for the mesh generation algorithm is supplied in algorithm 4, this approach

is based on similar methods found in various open source voxel-based games. Figure 3.3

shows how a face of the cube is produced by two triangles.

3.3.3 Chunk Loading & Unloading

As noted in § 3.3.1.1 the network thread is responsible for ensuring the correct chunks

are loaded, it uses the DHT query connection for this purpose. The rule for determining

whether a chunk should be loaded is simple: a chunk should be loaded if it is not already

loaded and it is within a three by three grid of chunks centred on the player. Similarly, a

chunk should be unloaded if it is outside of a nine by nine grid of chunks centred on the

player.

Each time the network thread processes a PLAYER MOVE update from the game thread

it checks to see if there are any chunks to unload, if so it unloads them (i.e. ends the

connection and sends a CHUNK UNLOAD update to the game thread). Then it checks if

there are any chunks to load, if so it queries their locations using the DHT connection,

connects to them and loads them (it only sends the CHUNK LOAD update when it receives the

CHUNK DATA packet from the server for this chunk). This process is outlined in algorithm 5.

CHAPTER 3. IMPLEMENTATION 22

Algorithm 4 The mesh generation algorithm used by the client.

blocks[][][] ← chunk block array;

vertices[] ← new vec3 array;

triangles[] ← new int array;

uvs[] ← new vec3 array;

vertex ← 0;

for 0 ≤ x < CHUNK SIZE do

for 0 ≤ y < CHUNK SIZE do

for 0 ≤ z < CHUNK SIZE do

for each face do

if blocks[x][y][z] is air OR

blocks[x][y][z] + faceNormal is not air then

continue;

end if

add vertices for this face;

add uv coordinates for correct texture;

triangles += [vertex+0, vertex+1, vertex+2];

triangles += [vertex+2, vertex+1, vertex+3];

vertex ← vertex + 4;

end for

end for

end for

end for

Algorithm 5 Algorithm for maintaining the correct set of loaded chunks by the client.

for chunk ∈ loaded do

if |chunk.x− player.chunk.x| ≥ 5 OR |chunk.y − player.chunk.y| ≥ 5 then

unload(chunk);

end if

end for

chunk position ← (player.chunk.x, player.chunk.y);

for −1 ≤ i ≤ 1 do

for −1 ≤ j ≤ 1 do

if chunk at chunk position + (i, j) is not loaded then

s ← query chunk from dht(chunk position + (i, j));

load chunk from server s;

end if

end for

end for

3.4 Overview

This section provides an overview of the project and the files contained within my repos-

itory (which are shown in figure 3.4 shows).

CHAPTER 3. IMPLEMENTATION 23

3.4.1 Client

VoxelPopuli 1860 lines

Client 819 lines

Assets

Code

Chunk.cs

Constants.cs

Controller.cs

Network.cs

WireFrame.cs

World.cs

. . .
Server 853 lines

main.py......153 lines

game.........186 lines.

chunkthread.py

const.py

world.py

kademlia.....401 lines

node.py

protocol.py

router.py

server.py

storage.py

tests.........113 lines

. . .
Test Client.....188 lines

test client.py

test many chunk.py

test single chunk.py

Figure 3.4: Directory overview of

VoxelPopuli .

The client takes the form of a Unity project. As

noted, Unity allows you to assign scripts to game

objects which then have methods such as Update()

and Start() which are called at the appropriate

times (in these cases: each frame and when the

object is created respectively).

The client has six files of code, three of which

contains scripts able to be assigned to objects.

Controller.cs is a script assigned to the player

object which takes user input and moves the player,

obeying physics and collisions. WireFrame.cs is

another script applied to the player object which

simply renders a wire frame cube around the block

the player is looking at. World.cs is a script ap-

plied to the (initially) world object which performs

the game thread actions described in § 3.3.1.2.

The other three files contain classes and data

used by the aforementioned scripts. In Chunk.cs

we have a class for chunks, these contain the

chunk’s block array and mesh data, and provide

a number of methods for querying the contents of

the chunk (such as IsSolid(Vector3 localPos)

for querying if a block is solid at position localPos

relative to the chunk). Network.cs contains the

NetworkThread class which is used to execute the

network thread as explained in § 3.3.1.1. Finally,

Constants.cs contains a number of constants such

as the tick rate, chunk size and various pieces of

data needed for mesh generation.

3.4.2 Server

The server is split into two main parts, the Kademlia implementation and the game server.

Within the game server we have chunkthread.py which contains the ChunkThread class

which is used to execute the chunk thread as discussed in § 3.2.3. We also have world.py

which contains classes for maintaining state about the world, namely Chunk and Player.

We have const.py which contains a number of important constants such as a PacketType

enumeration. Finally we have main.py which performs the main loop of a VoxelPopuli

node, i.e. waiting for new connections and performing the handshake procedure from

§ 3.2.2.1. The code for the DHT interface thread (see § 3.2.4) is here too.

CHAPTER 3. IMPLEMENTATION 24

Within the Kademlia folder we have node.py and storage.py which contain sim-

ple classes to represent a Kademlia Node and the local storage on a node respectively.

router.py contains the k-bucket class and routing table class. protocol.py contains

the Kademlia RPC implementation as well as the RPC framework outlined in § 3.1.1.

Finally, server.py contains the high level interface for the Kademlia network, allowing

the following operations to be performed: run() (initialise a node), get chunk() (lookup

a chunk and generate it if it does not exist), get player() and save player() (retrieve

or save player save data), generate chunk() and republish chunk().

3.4.3 Test Client

The test client is a suite of scripst which simply initialises a configurable number of dummy

players and connects them to a single server or to a network in random or configurable

positions, it can then move them around randomly to simulate activity.

There are three scripts, two of which connect to a single server and one which connects

to the network as a whole. First we have test sing chunk.py which connects to a single

server and loads a number of players into a single chunk and then moves them around

within the chunk every tick (20 times a second). We also have test many chunks.py

which connects to a single server and loads a number of players into a configurable number

of chunks on that server, the players are evenly distributed between chunks and then

moved randomly as above.

Finally we have test client.py which connects to a server to query the DHT. It

then spawns a number of dummy players who connect to the network and move around

the world, moving between chunks this time and connecting to the appropriate server by

querying the DHT – this client most accurately simulates real players and is used in my

large scale test of the system.

Chapter 4

Evaluation

VoxelPopuli meets the original success criteria and further goals set out in § 2.2. It has a

number of limitations which are explored in § 4.6.

4.1 Methodology

This project aims to explore the viability of using a peer-to-peer network topology for

a large online world with potentially thousands of players. Unfortunately I do not have

access to enough machines (and indeed players) to accurately field test the project. I

have instead performed two main types of testing to prove the viability of VoxelPopuli as

a MMO engine. I have performed local simulations using simulated players (created by

my test client) to demonstrate the load that a single server experiences under different

scenarios. Then I created a small network of around 100 nodes which was populated by

simulated players to prove that the system is able to perform at scale.

I also tested the system by subjecting it to failure modes such as node failure, demon-

strating that it continues to operate correctly in these scenarios. I also investigated the

security of VoxelPopuli and its susceptibility to various attacks. Additionally, I investi-

gated the adherence of the Kademlia implementation to the specification and performed

some simple tests on the client.

Finally, I explored the limitations that the peer-to-peer approach presents when com-

pared to the more commonplace client-server model.

4.2 Kademlia Implementation

In order to prove that my Kademlia implementation conforms with the specification, as

required by my success criteria, I performed two types of testing.

25

CHAPTER 4. EVALUATION 26

4.2.1 Unit Testing

Unit testing was performed on core components of the Kademlia specification. These

were informed by the unit tests for OpenDHT [8] and the Python Kademlia library [5].

Components tested with unit tests include the k-bucket class – ensuring that it performs

correctly as nodes are added and removed, the routing table – ensuring contacts are pro-

cessed correctly and that it responds correctly to queries and the storage implementation.

4.2.2 RPC Testing

4.2.2.1 Setup

The Kademlia specification sets out requirements for the time complexity of each RPC,

I needed to prove that my implementation adheres to these requirements. In order to do

this I setup a single dedicated server and instantiated a number of Kademlia nodes and

bootstrapped them to a network to give me a network of a known size. I then performed

the relevant RPC a number of times and recorded the average time and standard deviation.

The plot can be seen in figure 4.1.

Figure 4.1: Computation time of each Kademlia RPC as network size increases. The

Kademlia specification states these should all be O(1). Error bars represent ±σ (standard

deviation) over 100 trials.

CHAPTER 4. EVALUATION 27

4.2.2.2 Analysis

As can be seen each of PING, STORE CHUNK and STORE PLAYER are clearly O(1). The plots

for FIND NODE, FIND CHUNK and FIND PLAYER exhibit a slightly different shape. These

RPCs still operate in O(1) time, however, because the find operations must sort the

nodes it knowns of, this takes O(n log(n)) time, however, as the number of nodes in the

routing table is capped at 160·k (3200 in the common case where k= 20 – used in my

implementation) this is still O(1) as the number of nodes grows large. You can see the

graph is beginning to plateau at for higher n.

Figure 4.2: Number of nodes contacted by a lookup procedure as network size increases.

The Kademlia specification states that this should grow at a rate of O(log n), where n is

number of nodes. Error bars represent ±σ (standard deviation) over 100 trials.

4.2.3 Lookup Procedure

The Kademlia specification clearly states that the lookup procedure must contact

O(log(n)) nodes. I performed a test where I recorded each node that was contacted

during a lookup for increasing network sizes. Figure 4.2 shows the results. As can be

clearly seen, the growth fits a logarithmic curve perfectly, demonstrating that my imple-

mentation correctly adheres to this part of the standard.

CHAPTER 4. EVALUATION 28

4.3 Scalability

It is important that we prove the system scales to a large number of players. In order to

do this without needing to purchase a large number of servers I performed several tests on

a single instance. This was to test the performance under several different types of player

load to verify that a single server can cope with a representative number of players.

I then created a 100 node network hosted on my dedicated server and tested it with

1000 simulated players to demonstrate the system functions correctly when deployed as

a network in a large system. In this instance communication will have been slightly

slower than usual due to communication being handled locally on the server, but this

is acceptable as it still gives useful a lower bound on performance. I would note that to

make this function correctly I had to increase the UDP and TCP buffer sizes on my server

due to the high volume of traffic being exchanged internally between nodes.

4.3.1 Local Simulation

4.3.1.1 Setup

I performed 4 local simulations on a single node, each was run for 1 hour with variable

player loads. I ran a single VoxelPopuli node on my dedicated server and connected one

of my test client scripts to it to simulate player activity. The plots in figure 4.3 show the

CPU and memory usage under various scenarios.

4.3.1.2 Analysis

As can be seen from figure 4.3a the single thread performance is reaching 90% utilization

at about 50 players in a single chunk. This is fairly typical of online games and it is

at around this point that Minecraft servers begin to strain on the same machine. This

scenario is unlikely to be realised frequently in a deployed network running an MMO as

this number of players tend not to occupy the same area concurrently.

In figure 4.3b we have 50 clients connected to 50 separate chunks on the same server.

This performs better as it is making use of both CPU cores on my dedicated server. In

line with this expectation CPU utilisation is approximately half that of the single chunk

case. This also represents an unrealistic scenario as we are unlikely to have players evenly

distributed across the world so evenly, there will be likely more clustering. This test

does demonstrate, however, that many chunk threads can operate concurrently without

incurring a significant performance penalty.

In figure 4.3c we instantiate 50 players and evenly distribute them over ten chunks,

this is a more realistic scenario and is designed to represent players playing with friends in

small groups occupying the same areas. Performance here is improved over the 50 chunk

case as expected, likely due to a reduction in the context-switching overhead. Averaging

at around 25% utilisation the system is not struggling with this scenario, suggesting more

CHAPTER 4. EVALUATION 29

(a) Performance (50 players/1 chunk) (b) Performance (50 players/50 chunks)

(c) Performance (50 players/10 chunks) (d) Performance (100 players/10 chunks)

Figure 4.3: Plots showing CPU utilization and memory usage of VoxelPopuli nodes under

different scenarios.

players could be supported in a similar scenario. In order to test this I performed another

test by doubling the number of players while keeping the number of chunks constant, in

figure 4.3d we have 100 players across ten chunks, and CPU utilisation averages around

55%. Suggesting a linear relationship between number of players and performance when

the number of chunks is kept constant.

To verify the linearity I plotted CPU utilisation as player count was increased from

one to fifty. I wrote a simple script to connect a new client every two seconds. The plot

it shown in figure 4.4 and follows a roughly linear shape. This supports my theory that

performance with constant number of chunks is proportional to the number of players

connected.

I did a further test using the same script, instead adding a node every second and going

from one to one-hundred. The resulting plot is shown in figure 4.5. The linear relationship

persists up to around seventy nodes. However, we see CPU usage then plateaus at 100%

and memory usage starts to rise, this is indicative that the system is struggling to handle

both the garbage collector and the game server computation. Thus as a lower bound we

CHAPTER 4. EVALUATION 30

Figure 4.4: Performance as player count increases (0− 50).

can suggest that approximately seventy players can exist on a single chunk thread before

performance issues begin to arise.

Throughout this analysis the memory usage has remained approximately constant

throughout the simulation, this is because memory usage is proportional to the number

of chunks active and in each simulation this was constant. The memory overhead for a

single chunk is below ten megabytes and consists only of the chunk data (∼ 260KB) and

player data (< 1KB per player) so this is not of major concern here. In a more complex

system where there are other entities the server must keep track of such as monsters this

may become a significant concern as it is for Minecraft servers.

4.3.2 Large Scale Simulation

4.3.2.1 Setup

To demonstrate VoxelPopuli functioning at scale I setup a 100 node network on my

dedicated server and connected 1000 dummy players using test client.py from my test

client scripts. As some servers would have high load and others would have very low load

depending on which chunks are loaded at any given time I found it more useful to plot the

maximum CPU at any given time, as the average was very low (around half a percent).

CHAPTER 4. EVALUATION 31

Figure 4.5: Performance as player count increases (0− 100).

The plot is shown in figure 4.6.

4.3.2.2 Analysis

Initially, the utilisation is not constant as nodes are still joining the network (it takes

approximately ten minutes for 1000 nodes to join using the test client). Then we go into

normal operation and the maximum load stays approximately at 10%, this is in line with

our analysis in § 4.3.1 as there would be approximately ten nodes per server on average.

The system was left running for 1 hour and experienced no problems, I was able to connect

with my graphical client and explore the world, viewing the dummy players teleporting

around randomly. This can be seen in figure 4.7.

4.4 Client

The client performs as required, the player is able to explore and interact with the world

and the client is performant – running consistently at 60FPS+ (frames per second) on

both my dedicated GPU (Nvidia GeForce GTX 1650 Max-Q) and my integrated graphics

CHAPTER 4. EVALUATION 32

Figure 4.6: Performance of a 100 node network with 1000 players connected.

Figure 4.7: Screenshot of dummy players in the VoxelPopuli world.

CHAPTER 4. EVALUATION 33

(Intel Iris Plus Graphics). Furthermore, players can be seen to seamlessly transition

between chunks – not disappearing or duplicating.

One minor issue with the client is that when making block changes there is a small

delay before the change is visible. This is because upon each block change, the server

resends the entire chunk. This triggers the mesh to be regenerated which takes a few

frames. This could be easily resolved by using a form of ‘delta compression’ – where we

only transmit the change to the chunk rather than resending the whole thing.

4.5 Node Failure

The system performs correctly in the face of node failure. When the client loses connection

to a node it queries the node it is using for DHT queries. This server finds the required

node and discovers that it is not online. It thus performs the generate procedure (see

algorithm 3) before returning the new node to the client. This takes at most a couple of

seconds and produces minimal disruption to gameplay.

4.6 Current Limitations

4.6.1 Scale

I will now attempt to reason whether VoxelPopuli can handle a world the size of a typical

MMO with a player count to match. As a baseline for player count I will be using the

MMO EVE Online which had a peak concurrent player count 63, 160 [13] in 2011. The

EVE world is sparse so I will use the World of Warcraft world size of approximately

200km2, estimates vary so I took the highest I could find [10]. Assuming each voxel in

my game is 1m3, each chunk covers 1024m2 ≈ 0.001km2. Thus we would need 200, 000

chunks to represent this world. Assuming each server controls one hundred chunks we

would need a network of 2000 nodes to store this world. This is well within the capacity

of the Kademlia network as all RPCs have O(1) cost and the lookup operation grows slow

(O(log(n))).

Assuming that players are evenly distributed across the world that would put 32

players in each chunk, this is obviously going to overload the server. However, there are

likely to be regions that are not currently loaded and regions which are more popular.

So if we generously assume that 50% of regions are unloaded, then we have 64 players

per loaded chunk and only 50 chunks loaded per server. This is still likely to exceed the

performance limitations of the mid-range machine I used in my testing.

Alternatively, assume that the network is of size 20, 000, then we have ten chunks per

node and still 32 players per chunk, this is more feasible. This approach might be realistic,

consider that the peak active player count (this is not concurrent, but playing regularly)

of World of Warcraft was twelve million [11]. Only 0.17% of players would need to setup

CHAPTER 4. EVALUATION 34

a server for the system to be viable. However, there is no escaping that this is a clear

limitation of my approach. The fact that each chunk operates its own thread is clearly

debilitating to the performance of the system. An approach used by SpatialOS [4] is to

have chunks grouped together spatially and computations performed on the entire region

of space in one thread – this is an approach I would like to explore in my system in the

future as I think it could drastically improve scalability.

4.6.2 Security

Kademlia is resistant to certain DoS attacks, the preference for old contacts ensures that

flooding the system with new nodes will not cause existing nodes’ state to be flushed,

giving control of the network to the attacker. However, Kademlia remains vulnerable to

various types of attack. Including but not limited to eclipse and Sybil attacks. Addition-

ally, Kademlia does not prevent nodes from impersonating others when bootstrapping,

creating ambiguity about who is the true owner of a particular ID. Ultimately, a deter-

mined attacker would be able to detrimentally influence the VoxelPopuli network should

they so desire – and in an MMO context, where there would be motivation to cheat, this

is almost guaranteed to happen.

Furthermore on this point, at present the game server trusts all requests coming from

the player and does not attempt to verify the validity of their movements. This would

be simple to implement – store the player’s state in the network and verify the what the

player says is consistent with the stored state (e.g. don’t allow player to move across many

chunks in one movement but do allow them to move to an adjacent chunk). Another issue

with this is that the server trusts meta-requests from clients, such as generating chunks –

this could lead to an attacker exhausting the server’s memory by generating many chunks.

4.6.3 Data Loss

One significant issue with the current implementation is that when a node dies all the

chunks stored within it are lost and will be regenerated by another node when they are

needed. This means that anything a player has constructed within that chunk is lost. An

approach I proposed as a potential extension to this project could be used to mitigate

this problem. I propose that instead of having a single node responsible for each chunk,

have a node and several backup nodes, periodically the main node will multicast its state

to the backup nodes, should this node die, the backup nodes elect a successor and then

induct a new node into the backup set. This could be done simply using the n nearest

nodes to the chunk’s key.

Chapter 5

Conclusion

VoxelPopuli set out to investigate the feasibility of creating a scalable, peer-to-peer dis-

tributed online world. The project aimed to explore the peer-to-peer approach as it differs

from the more commonly used centralised, client-server model. Ultimately my project was

a success, it has fulfilled the success criteria and thorough testing has revealed it to be

scalable to the size of a typical MMO (estimated to be a maximum of∼ 200, 000 chunks

and ∼ 60, 000 players) when given a sufficiently large network, though the proposed ar-

chitectural tweaks could improve this.

One issue with peer-to-peer systems is security, and VoxelPopuli is no exception. The

system suffers from vulnerability to various types of attacks as noted previously. In a

commercial environment with a real MMO we would wish to mitigate this to ensure

fairness of the game and robustness of the service. Thus we might require some notion of

trusted, or authoritative meta-servers perhaps controlled by the developers.

Having authoritative, centralised servers goes against the spirit of VoxelPopuli . As

such, I would propose that in the event of the MMO becoming unprofitable that the

developers could allow the game’s community to host their own authoritative servers.

Alternatively, one could implement some sort of consensus system to improve security,

this would not be perfect but would be a significant improvement and would fit more

with the principles of the project. A distributed ledger could be employed to solve this

problem in a way that fits with the open and peer-to-peer philosophy of VoxelPopuli .

Additionally, to ensure fairness and prevent cheating, the changes required to prevent

players from fabricating their in-game state discussed in § 4.6.2 would need to be imple-

mented. This would prevent players from being able to easily create hacked clients; note

that this is a common problem with online games and not an issue with the peer-to-peer

approach. Further changes to sanity check player’s meta-requests should also be imple-

mented to prevent attacks such as the chunk memory exhaustion attack also discussed in

§ 4.6.2.

As noted in the evaluation, the system requires a large number of nodes in order to

scale to typical MMO sizes. One possible solution is to cluster chunks spatially. At present

many spatially disparate chunks may be processed by the same server, this means that

35

CHAPTER 5. CONCLUSION 36

a single server may need in excess of 100 threads performing computationally heavy pro-

cesses, this is obviously not feasible except on extremely powerful machines. By clustering

chunks spatially, we can reduce the computational requirement by simulating contiguous

clusters of chunks together. This reduces the number of threads, meaning that while a

single server may be responsible for hundreds of chunks, it may need only a few threads,

one for each cluster of spatially contiguous chunks.

In a future version of this project I would like to include implementation of a dis-

tributed consensus system to improve security of the system. In particularly, I would like

to explore the possibility of using a distributed ledger to achieve this. This would add

significantly to the size of the implementation but would be necessary for the desired use

case. Furthermore, I would like to include my suggested spatial clustering improvement

in order to maximise performance, this would require a small additional programming

effort and I estimate would significantly improve performance.

Bibliography

[1] Maymounkov, P. and Mazières, D. Kademlia: A Peer-to-peer Information Sys-

tem Based on the XOR Metric. https://pdos.csail.mit.edu/~petar/papers/

maymounkov-kademlia-lncs.pdf. Accessed: 2019-10-16.

[2] “Sharding” on Wikipedia. https://en.wikipedia.org/wiki/Shard_(database_

architecture). Accessed: 2019-10-15.

[3] “Club Penguin is shutting down” – TechCrunch. https://techcrunch.com/2017/

01/31/club-penguin-is-shutting-down/. Accessed: 2019-10-15.

[4] SpatialOS by Improbable. https://improbable.io/spatialos. Accessed: 2020-03-

20.

[5] Kademlia Python Library. https://github.com/bmuller/kademlia/. Accessed:

2020-03-20.

[6] Source Engine Multiplayer Networking, Valve. https://developer.valvesoftware.

com/wiki/Source_Multiplayer_Networking. Accessed: 25-3-2020.

[7] “Simplex Noise” on Wikipedia. https://en.wikipedia.org/wiki/Simplex_noise.

Accessed: 2019-03-27.

[8] OpenDHT on GitHub. https://github.com/savoirfairelinux/opendht. Accessed:

2020-04-16.

[9] “Eve Online has over 360,000 players. 63,170 simultaneous

users in January” – PC Gamer. https://www.pcgamer.com/

eve-online-has-over-360000-players-63170-simultaneous-users-in-january/.

Accessed: 2020-04-17.

[10] Estimation of World of Warcraft world size. http://tobolds.blogspot.com/2007/

01/how-big-is-azeroth.html. Accessed: 2020-04-17.

[11] “World of Warcraft Classic: Hit game goes back to basics ” – BBC News. https:

//www.bbc.co.uk/news/technology-49448935. Accessed: 2020-04-17.

[12] “This Minecraft Library is Making Censored Journalism Accessible

All Over the World”. https://www.theverge.com/2020/3/18/21184041/

minecraft-library-censored-journalism-reporters-without-borders. Ac-

cessed: 2020-05-02.

37

https://pdos.csail.mit.edu/~petar/papers/maymounkov-kademlia-lncs.pdf
https://pdos.csail.mit.edu/~petar/papers/maymounkov-kademlia-lncs.pdf
https://en.wikipedia.org/wiki/Shard_(database_architecture)
https://en.wikipedia.org/wiki/Shard_(database_architecture)
https://techcrunch.com/2017/01/31/club-penguin-is-shutting-down/
https://techcrunch.com/2017/01/31/club-penguin-is-shutting-down/
https://improbable.io/spatialos
https://github.com/bmuller/kademlia/
https://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking
https://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking
https://en.wikipedia.org/wiki/Simplex_noise
https://github.com/savoirfairelinux/opendht
https://www.pcgamer.com/eve-online-has-over-360000-players-63170-simultaneous-users-in-january/
https://www.pcgamer.com/eve-online-has-over-360000-players-63170-simultaneous-users-in-january/
http://tobolds.blogspot.com/2007/01/how-big-is-azeroth.html
http://tobolds.blogspot.com/2007/01/how-big-is-azeroth.html
https://www.bbc.co.uk/news/technology-49448935
https://www.bbc.co.uk/news/technology-49448935
https://www.theverge.com/2020/3/18/21184041/minecraft-library-censored-journalism-reporters-without-borders
https://www.theverge.com/2020/3/18/21184041/minecraft-library-censored-journalism-reporters-without-borders

Appendix A

Proposal

Project Proposal – Voxel Populi:

A Decentralised Peer-to-Peer Voxel-Based World

Samuel J. Sully

25 October 2019

Project Supervisor: Prof. Jon Crowcroft

Director of Studies: Prof. Alan Mycroft

Project Overseers: Prof. Marcelo Fiore & Dr. Amanda Prorok

Introduction

The Massively Multiplayer Online game genre is popular in modern gaming, often involv-

ing thousands of concurrent players [1]. These games are typically implemented using a

client-server model, requiring some form of ‘sharding’ [2] whereby players are separated

into independent instances of the same world meaning that players can only interact with

others connected to the same instance (shard) as them.

An alternative approach is to distribute the game world over a peer-to-peer network,

where each peer (or group of peers) is responsible for managing a small part of the game

world. This helps with load balancing, while ensuring that all players are – effectively –

in the same virtual world. It also has the advantage of decentralising the game world,

increasing its resilience to some failure modes.

APPENDIX A. PROPOSAL 39

This has the advantage that you are able to have a user make persistent changes to the

game world, in a sharding implementation as the world is replicated it is hard to have a

user make a meaningful change to the world, preventing Minecraft (or similar) like worlds

which are fully customisable.

Additionally, when large scale MMOs cease to be profitable for the developers, who

operate the servers, they will often shut down the servers [3] even if there remains a large

active player base. By allowing individuals to setup their own game servers to help run

the MMO as part of the P2P network, we ensure that the game can survive, at no cost to

the developers, as long as there is a community dedicated to ensuring its survival. This

is typically not possible for MMOs, only for games which have a client-server multiplayer

system.

One issue with this approach is that, if a rogue server operator decides to behave

maliciously, they could modify their server to – for example – give themselves an unfair

advantage when in territory managed by their server. To combat this one could include

a consensus/voting system [4].

Starting Point

Creation of the distributed world will rely mostly on two Part IB course:

• Concurrent and Distributed Systems

• Computer Networking

as well as drawing on material from the Part II course Principles of Communication.

The Concurrent and Distributed Systems course will be useful as this project is an

example of a distributed system. I will be making use of Remote Procedure Calls (RPCs)

in my project which are covered in this course, one of my proposed extensions aims to

include a consensus or voting system – these topics are covered extensively in the CDS

course.

The Computer Networking course will be relevant as it covers Distributed Hash Tables

(DHTs) which I intend to use as the fundamental basis for my project. Other concepts

introduced in this course, and further developed in the Part II course Principles of Com-

munications (such as routing) will also be relevant to my project.

Additionally, the Part IA course Introduction to Graphics and the Part IB course

Further Graphics will be useful in the development of a simple client to connect to and

interact with my distributed world, this client would likely be written using OpenGL

which is covered extensively in these two courses. It will, however, be very primitive

indeed as it will be only a prototype.

APPENDIX A. PROPOSAL 40

Substance and Structure

My core project consists of three main parts, they are:

• The DHT

• The 3D World

• The Graphical Client

I have researched a number of potential implementations for the DHT including Kadem-

lia [5] and OpenDHT [6] (which has an open source implementation with convenient

Python bindings). I plan to implement my own based on the Kademlia whitepaper [5],

potentially with some minor extensions (i.e. extra RPCs, for example: I may need a

GENERATE RPC to generate a world chunk). This will be used as the basis for my dis-

tributed world.

The 3D world will be a simple voxel-based one. With clients able to place and remove

voxels from the world. The world will consist of a number of discrete ‘chunks’ of voxels.

These chunks will re represented as a simple 3D array and will represent a contiguous

x ∗ y ∗ z compartment of the world (where z is the height of the world). This is the

approach taken in games such as Minecraft [7]. The world will also allow ‘entities’ which

are not part of the voxel array but are objects which can move freely in the 3D space (e.g.

the player). Chunks will have a separate list to store any entities in that chunk along

with their position. It might be worthwhile to explore usage of an kd-tree (or equivalent)

for storage of entities but this would be a minor extension and is not required.

Usage of the DHT to aid in locating entities as well as chunks in the network will be

necessary, as when a client connects to the world looking for a particular player to take

control of, they will need a way to find which chunk that player is currently in. In the

event that the player is in no chunk (i.e. either the chunks they were in have been lost or

they are new), then a random chunk can be selected as a spawn location.

As this is a distributed system I will need some form of synchronisation between nodes;

a logical ordering system such as a vector clock is unlikely to be appropriate as the system

is operating in real time and the real time between events is relevant to the computation.

So I intend to use NTP for synchronisation, as minor clock skew will not affect the system

to a significant degree. I will be using an existing NTP library for this as it is likely to

be more robust than any implementation I can produce.

Additionally, there will be a client able to connect to this distributed 3D world and

to interact with it. This will be a simple game client which displays the world and allows

basic interaction with the world (likely little more than placing and destroying voxels).

This could be implemented in OpenGL [8] either directly in C++ or using a library such

as LWJGL [9]. Alternatively, it could be written using an existing engine such as Unity.

Finally, I will need to write a very simple test agent which connects to the server and

performs some example gameplay activity, such as constructing a basic structure. This

APPENDIX A. PROPOSAL 41

will be needed to test the performance of the system in the evaluation phase. This will

be a paired down version of the above client so will require little work.

Evaluation and Success Criteria

Methodology

This project’s success will be gauged entirely quantitatively, no human participants will

be required.

My project will be evaluated in the following ways:

• My DHT implementation will be compared to the Kademlia specification [5]. The

RPCs set out in the Kademlia paper will be analysed to ensure they function as

specified, for example, the number of nodes contacted during a lookup should be

O(log n) where n is the number of nodes in the system.

• I will containerise the peer-to-peer server and deploy it on a small to medium scale.

I will then test it by connecting a number of my test agents to the server to see how

it performs. I will be testing both the network performance and the performance

of the individual machines. These figures will be used as a baseline for the next

section.

• I will then attempt to estimate how well the system will perform at scale by ex-

trapolating from the baseline acquired in the previous section. I will use some

higher level reasoning to compare the performance of my system with large con-

temporary systems such as the games World of Warcraft [12], EVE Online [13] and

Runescape [14].

• I will analyse my implementation’s resilience to a number of attacks/failures. Po-

tential examples include: Byzantine Faults, Sybil Attacks, Impersonation Attacks,

etc.

Success Criteria

1. My DHT must adhere to the Kademlia specification. It is possible I will need to

make some changes to fit the specification better to my needs and this is acceptable.

2. The peer-to-peer node program must join the network, bootstrapping via some

known node, and then will be able to participate in hosting the game world as it

becomes part of the DHT.

3. It must be possible to interact with the world using a simple 3D graphical client,

which is able to place and remove voxels from the world. These changes must persist.

APPENDIX A. PROPOSAL 42

4. The system must handle player moving between separate chunks (and thus, separate

peers) seamlessly, with no loading screen.

5. There must be a simple test agent which connects to and interacts with the world

in some notional way to emulate the behaviour of a human user. This is for the

purposes of my above quantitative evaluation methodology.

Possible Extensions

Below are a number of potential extensions to my project. This list is not exhaustive and

I may choose to implement others as well as or instead of those listed below.

• Weak Consensus/Voting System: as mentioned in my introduction I propose

the inclusion of a weak consensus or voting system to aid in the detection of rogue

peers and, similarly, rogue clients. This would work by replicating each chunk over

n nodes where n >= 3 and having each of the n peers review the activities of the

others to ensure that they are acting correctly. If a large enough nodes were able to

agree that a node is acting maliciously, they could blacklist it from the network.

• 3D Terrain Generation: rather than having a bland, flat world, it would be nice

to have some variable terrain. This could easily be achieved using Perlin noise [10], a

type of gradient noise commonly used in video games for realistic terrain generation.

• Further World Features: including other gameplay, for example a basic mob [11],

would enable me to more accurately test the performance of the system at a large

scale.

Timetable

A brief outline of my plan of work is below.

1. 24th October to 13th November: Study and implement the Kademlia DHT to

specification [5].

Deliverable: DHT which can be demonstrated with a toy system and tested with

appropriate unit tests, must conform (with appropriate deviation) to the Kademlia

specification.

2. 14th November to 4th December: Server-side 3D world implementation. This

will involve setting up the state representation for the 3D world; making a server

able to load a chunk from disk and then to complete the necessary processing to

update the game state while a player is using to this chunk (processing will include,

physics calculations such as collisions, handling interaction with the voxels and –

if implemented – processing mobs). It will also need to be possible for a user to

APPENDIX A. PROPOSAL 43

connect to the server and load a chunk which is stored in that node. The protocol

for interaction between client and server will need to be established here.

Deliverable: 3D world server, this will be the software run by a single peer in the

network and will be built on top of the DHT.

3. 5th December to 22nd December: Implement 3D graphical client. This will be

a simple 3D client used to interact with the world, written, most likely, in OpenGL.

The client will connect to the DHT, locate the relevant chunk(s) to be rendered, load

these by connecting to the relevant server(s) and provide an interactable display of

the world. It will make use of the above protocol for communication between client

and server.

Deliverable: Graphical client program, able to join the P2P game by bootstrapping

via a known node.

4. 2nd January to 10th: Implement test agent. This should be a fairly easy task as

it will be a paired down version of the client developed earlier in the vacation. This

is to be used in the evaluation stage and will have no graphical interface by default

(though one may be pertinent for testing purposes).

Deliverable: Test agent program, to be used to test the system at a small to

medium scale.

5. 11th January to 15th January: Begin evaluation testing of system on a small

scale using the test agent developed in the previous section.

Deliverable: Baseline test data.

6. 16th January to 29th January: If time allows, then implement extensions which

are feasible in remaining time. Additionally, write progress report demonstrating

completion of project core and evaluation data acquired in previous section.

Deliverable: Progress report and implementation of extension(s) if time allows.

7. 30th January to 5th February: Work on chapters introduction and preparation,

adjust code from evaluation data and further work on extensions.

Deliverable: Introduction and preparation chapter drafts and further work on

extensions.

8. 6th February to 12th February: Work on implementation chapter and further

work on extensions.

Deliverable: Implementation chapter draft.

9. 12th February to 19th February: Work on evaluations and conclusions chapters.

Deliverable: Entire dissertation first draft to be submitted to supervisor and DoS

by March 20th.

10. Remaining Time: Refining dissertation and, time permitting, further extension

work.

Deliverable: Dissertation final draft to be submitted to supervisor and DoS by

April 20th.

Deliverable: Dissertation due on 8th May.

APPENDIX A. PROPOSAL 44

Resource Declaration

I will be using my own computer for development, I am about to get a new computer,

so I cannot comment on the exact specification yet, but I will be using the new one for

the majority of the project. In the event of this failing, I have several fallback machines.

Firstly my current laptop running Ubuntu 18.04 is still operational. Additionally, I have

a desktop PC which is also with me at university which I can use in the event of both

other computers failing. Furthermore, in the unlikely event that all of these fail I can

use the MCS machines in the Computer Lab, my college computer room and my college

library.

I will be using Git for version control of my project and dissertation, these will be

regularly pushed to GitHub. Additionally, I will be pulling the GitHub repository auto-

matically to an external server I possess on a regular basis and also to MCS machines on

a regular basis.

I will also be making use of my own dedicated server for some of the testing of the

project. This is an OVH dedicated server hosted in Roubaix, France. In the event of this

failing, I propose to use several Raspberry Pis for my testing. If my server proves to be

insufficient then I will be using AWS services supplied by Professor Crowcroft for testing.

Bibliography

[1] “World of Warcraft subscriptions fall to 7.7 million”.

https://www.gameinformer.com/b/news/archive/2013/07/26/

world-of-warcraft-subscriptions-fall-to-7-7-million.aspx. Accessed:

2019-10-16.

[2] “Sharding” on Wikipedia. https://en.wikipedia.org/wiki/Shard_(database_

architecture). Accessed: 2019-10-15.

[3] “Club Penguin is shutting down”. https://techcrunch.com/2017/01/31/

club-penguin-is-shutting-down/. Accessed: 2019-10-15.

[4] Miller, J. Distributed virtual environment scalability and security, chapter 5. https:

//www.cl.cam.ac.uk/techreports/UCAM-CL-TR-809.pdf. Accessed: 2019-10-15.

[5] Maymounkov, P. and Mazières, D. Kademlia: A Peer-to-peer Information Sys-

tem Based on the XOR Metric. https://pdos.csail.mit.edu/~petar/papers/

maymounkov-kademlia-lncs.pdf. Accessed: 2019-10-16.

[6] OpenDHT. https://github.com/savoirfairelinux/opendht. Accessed: 2019-10-

16.

[7] “Chunk” on the Minecraft Wiki. https://minecraft.gamepedia.com/Chunk. Ac-

cessed: 2019-10-17.

[8] OpenGL. https://www.opengl.org/. Accessed: 2019-10-17.

[9] LWJGL: Lightweight Java Game Library. https://www.lwjgl.org/. Accessed: 2019-

10-17.

[10] “Perlin Noise” on Wikipedia. https://en.wikipedia.org/wiki/Perlin_noise.

Accessed: 2019-10-17.

[11] “Mob” on Wikipedia. https://en.wikipedia.org/wiki/Mob_(gaming). Accessed:

2019-10-17.

[12] World of Warcraft. https://worldofwarcraft.com/. Accessed: 2019-10-17.

[13] EVE Online. https://www.eveonline.com/. Accessed: 2019-10-17.

[14] Runescape. https://www.runescape.com/. Accessed: 2019-10-17.

45

https://www.gameinformer.com/b/news/archive/2013/07/26/world-of-warcraft-subscriptions-fall-to-7-7-million.aspx
https://www.gameinformer.com/b/news/archive/2013/07/26/world-of-warcraft-subscriptions-fall-to-7-7-million.aspx
https://en.wikipedia.org/wiki/Shard_(database_architecture)
https://en.wikipedia.org/wiki/Shard_(database_architecture)
https://techcrunch.com/2017/01/31/club-penguin-is-shutting-down/
https://techcrunch.com/2017/01/31/club-penguin-is-shutting-down/
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-809.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-809.pdf
https://pdos.csail.mit.edu/~petar/papers/maymounkov-kademlia-lncs.pdf
https://pdos.csail.mit.edu/~petar/papers/maymounkov-kademlia-lncs.pdf
https://github.com/savoirfairelinux/opendht
https://minecraft.gamepedia.com/Chunk
https://www.opengl.org/
https://www.lwjgl.org/
https://en.wikipedia.org/wiki/Perlin_noise
https://en.wikipedia.org/wiki/Mob_(gaming)
https://worldofwarcraft.com/
https://www.eveonline.com/
https://www.runescape.com/

	Introduction
	Project Summary
	Motivation
	Related Work

	Preparation
	Starting Point
	Requirement Analysis
	Kademlia
	XOR Metric
	Node State
	RPCs
	Node Lookup
	Value Lookup
	Value Storage
	Bootstrap

	Game Server
	Client
	Unity

	World & Terrain
	Professional Practice
	Ethical Implications
	Methodology
	Tooling

	Implementation
	Kademlia
	RPC Framework
	Custom RPC Specification
	Generate Procedure

	Game Server
	Server State
	Protocol
	Handshake
	Game

	Chunk Thread
	DHT Interface
	Protocol

	Client
	Architecture
	Network Thread
	Game Thread

	Chunk Mesh Generation
	Chunk Loading & Unloading

	Overview
	Client
	Server
	Test Client

	Evaluation
	Methodology
	Kademlia Implementation
	Unit Testing
	RPC Testing
	Setup
	Analysis

	Lookup Procedure

	Scalability
	Local Simulation
	Setup
	Analysis

	Large Scale Simulation
	Setup
	Analysis

	Client
	Node Failure
	Current Limitations
	Scale
	Security
	Data Loss

	Conclusion
	Bibliography
	Proposal

