
Portfolio
Sam Sully

Website | GitHub | CV

https://samsga.me/
https://github.com/Abrasam
https://samsga.me/cv.pdf

Space Balloons

Build hardware and software for
high altitude ballooning hobby.

Uses Raspberry Pi, LoRa radio,
RTTY radio, high altitude GPS and
Pi Camera.

Sends location and images via
radio to receiver on chase car to
facilitate retrieval.

Requires extreme fault tolerance
and redundancy to cope with
interruptions in radio contact.

Links: code, older code.

Payout to be attached to balloon (top left, bottom right), picture taken by
camera at 33km altitude (top right), picture from a launch (bottom left).

https://github.com/Abrasam/Project-Icarus
https://github.com/Abrasam/SKIPI2

Cloud Software

I run a self-hosted microservice-based cloud, communicating using gRPC across
services, all built in Golang.

Fully monitored using prometheus/grafana, automatic configuration of prometheus
targets.

Uses code-generation for creation of new services quickly and to reduce repeat
work.

Responsible for running my website and a number of personal tools (e.g. cctv
service, calendar synchronisation service, home automation).

Voxel Populi

Decentralised voxel-based online game
engine.

Peer-to-peer architecture based on a
DHT (Kademlia), extremely fault tolerant
and scalable.

Designed to spread game computation
across many servers and transparently
transition between servers as the player
moves around the world.

Links: video demo, code.

Diagram showing architecture of Voxel Populi (top), screenshot of Voxel Populi client displaying a world
spread across 9 decentralised servers (bottom).

https://pdos.csail.mit.edu/~petar/papers/maymounkov-kademlia-lncs.pdf
https://drive.google.com/file/d/1JODuBCTjMNQTF6pWJMrr3MzyWVP8ndjh/view?usp=sharing
https://github.com/Abrasam/Voxel-Populi

Minecraft

Wrote several plugins for Minecraft
servers to overhaul the game into an
MMORPG and for administration of a
large Minecraft server.

Designed custom spells, abilities,
weapons, etc. and implemented their
logic within the constraints of Minecraft
server-side only modifications.

Scaled the modified game to hundreds
of concurrent players on my public
server.

Links: code.

A screenshot of one of my custom spells (fireball) being used in the game, you can see on the right too that
there is some information displayed about the player’s MMO-style statistics and class.

https://github.com/Abrasam/Olympia-RPG-2.0

Game Dev

I enjoy hobby game development and have built a few games. My largest project
is a multiplayer 2D survival game called Perilous.

This is a client-server multiplayer
game with hand-drawn art
implemented using Lua and a 2D
game library called Love2D.

I wrote a number of tools to
simplify my game development for
me, this was because I identified a
number of repeat tasks I kept
doing.

A screenshot from Perilous.

Game Dev Tools
I found that I was performing certain
workflows repeatedly when making games
so I decided to automate them or make
tools to simplify them.

I wrote a an editor for my game which
allowed me to add content to my game
without writing any code. This meant that
new items and entities could be added to
my game quickly without having to write
any code. It also allowed me to configure
things like collisions, textures & scaling, AI
settings and item crafting recipes using a
UI rather than having to write them out in
code.

This massively sped up the game
development process once the underlying
game logic had been implemented.

Game item list (top), creature editor (bottom).

Game Dev Tools
I also wrote some handy tools to help me with
animations and textures. In one project I needed a
lot of different tree textures so I wrote a piece of
software to generate 2D trees procedurally. To do
this I tried to emulate the natural growth process of
trees to generate realistic looking trees.

In another project I wanted to create animations for a
lot of different creatures and game objects quickly.
To do this I decided I would write a piece of software
to allow me to generate animations based on
harmonic oscillations translating and rotating
textures. This meant I had only to draw the texture
once (in parts) and could then stitch these together
and bring them to life in the animator.

Links: code (tree generator), code (animator).

Tree generator UI (top), harmonic animator part selection (bottom left), harmonic animator oscillation editor
(bottom right).

https://github.com/Abrasam/Tools/tree/main/treegenerator
https://github.com/Abrasam/Animator

